List of publications that use FESOM or FESOM data

Preprints

  • Yu, H.-C., Zhang, Y. J., Nerger, L., Lemmen, C., Yu, J. C. S., Chou, T.-Y., Chu, C.-H., and Terng, C.-T.: Development of a flexible data assimilation method in a 3D unstructured-grid ocean model under Earth System Modeling Framework, EGUsphere [preprint], doi.org/10.5194/egusphere-2022-114, 2022.
  • [FESOM2, REcoM] Heinze, C., Blenckner, T., Brown, P., Fröb, F., Morée, A., New, A. L., Nissen, C., Rynders, S., Seguro, I., Aksenov, Y., Artioli, Y., Bourgeois, T., Burger, F., Buzan, J., Cael, B. B., Yumruktepe, V. Ç., Chierici, M., Danek, C., Dieckmann, U., Fransson, A., Frölicher, T., Galli, G., Gehlen, M., González, A. G., Gonzalez-Davila, M., Gruber, N., Gustafsson, Ö., Hauck, J., Heino, M., Henson, S., Hieronymus, J., Huertas, I. E., Jebri, F., Jeltsch-Thömmes, A., Joos, F., Joshi, J., Kelly, S., Menon, N., Mongwe, P., Oziel, L., Ólafsdottir, S., Palmieri, J., Pérez, F. F., Ranith, R. P., Ramanantsoa, J., Roy, T., Rusiecka, D., Santana Casiano, J. M., Santana-Falcón, Y., Schwinger, J., Séférian, R., Seifert, M., Shchiptsova, A., Sinha, B., Somes, C., Steinfeldt, R., Tao, D., Tjiputra, J., Ulfsbo, A., Völker, C., Wakamatsu, T., and Ye, Y.: Reviews and syntheses: Abrupt ocean biogeochemical change under human-made climatic forcing – warming, acidification, and deoxygenation, Biogeosciences Discuss. [preprint], doi.org/10.5194/bg-2023-182, in review, 2023.
  • [FESOM2, REcoM] Butzin, M., Ye, Y., Völker, C., Gürses, Ö., Hauck, J., and Köhler, P.: Carbon isotopes in the marine biogeochemistry model FESOM2.1-REcoM3, EGUsphere [preprint], doi.org/10.5194/egusphere-2023-1718, 2023.
  • [FESOM2, REcoM] Ye, Y., Munhoven, G., Köhler, P., Butzin, M., Hauck, J., Gürses, Ö., and Völker, C.: FESOM2.1-REcoM3-MEDUSA2: an ocean-sea ice-biogeochemistry model coupled to a sediment model, Geosci. Model Dev. Discuss. [preprint], doi.org/10.5194/gmd-2023-181, in review, 2023.
  • Ackermann, L., Rackow, T., Himstedt, K., Gierz, P., Knorr, G., and Lohmann, G.: A comprehensive Earth System Model (AWI-ESM2.1) with interactive icebergs: Effects on surface and deep ocean characteristics, EGUsphere [preprint], doi.org/10.5194/egusphere-2023-2061, 2023.

2023

250. [FESOM2] Beech, N., Rackow, T., Semmler, T., and Jung, T.: Resolving the mesoscale at reduced computational cost with FESOM 2.5: efficient modeling approaches applied to the Southern Ocean, EGUsphere [preprint], doi.org/10.5194/egusphere-2023-1496, 2023.

249. [REcoM] Seifert, M., Nissen, C., Rost, B., Vogt, M., Völker, C., & Hauck, J. (2023). Interaction matters: Bottom‐up driver interdependencies alter the projected response of phytoplankton communities to climate change. Global Change Biology, 29(15), 4234–4258. doi.org/10.1111/gcb.16799

248. [REcoM] Hauck, J., Nissen, C., Landschützer, P., Rödenbeck, C., Bushinsky, S., & Olsen, A. (2023). Sparse observations induce large biases in estimates of the global ocean CO2 sink: An ocean model subsampling experiment. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 381(2249), 20220063. doi.org/10.1098/rsta.2022.0063

247. [REcoM] Mayot, N., Le Quéré, C., Rödenbeck, C., Bernardello, R., Bopp, L., Djeutchouang, L. M., Gehlen, M., Gregor, L., Gruber, N., Hauck, J., Iida, Y., Ilyina, T., Keeling, R. F., Landschützer, P., Manning, A. C., Patara, L., Resplandy, L., Schwinger, J., Séférian, R., Watson, A.J., Wright, R.M., Zeng, J. (2023). Climate-driven variability of the Southern Ocean CO2 sink. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 381(2249), 20220055. doi.org/10.1098/rsta.2022.0055

246. [REcoM] Nissen, C., Timmermann, R., Hoppema, M., & Hauck, J. (2023). A regime shift on Weddell Sea continental shelves with local and remote physical-biogeochemical implications is avoidable in a 2°C scenario. Journal of Climate, 1–40. doi.org/10.1175/JCLI-D-22-0926.1

245. [REcoM, RECCAP] Rodgers, K. B., Schwinger, J., Fassbender, A. J., Landschützer, P., Yamaguchi, R., Frenzel, H., et al. (2023). Seasonal variability of the surface ocean carbon cycle: A synthesis. Global Biogeochemical Cycles, 37, e2023GB007798. doi.org/10.1029/2023GB007798

244. [REcoM, RECCAP] DeVries, T.; Yamamoto, K.; Wanninkhof, R.; Gruber, N.; Hauck, J.; Müller, J. D.; Bopp, L.; Carroll, D.; Carter, B.; Chau, T.; Doney, S. C.; Gehlen, M.; Gloege, L.; Gregor, L.; Henson, S.; Kim, J. H.; Iida, Y.; Ilyina, T.; Landschützer, P.; Le Quéré, C.; Munro, D.; Nissen, C.; Patara, L.; Pérez, F. F.; Resplandy, L.; Rodgers, K. B.; Schwinger, J.; Séférian, R.; Sicardi, V.; Terhaar, J.; Triñanes, J.; Tsujino, H.; Watson, A.; Yasunaka, S.; Zeng, J. Magnitude, Trends, and Variability of the Global Ocean Carbon Sink From 1985 to 2018. Global Biogeochemical Cycles 2023, 37 (10), e2023GB007780. doi.org/10.1029/2023GB007780.

243. [REcoM, RECCAP] Hauck, J.; Gregor, L.; Nissen, C.; Patara, L.; Hague, M.; Mongwe, P.; Bushinsky, S.; Doney, S. C.; Gruber, N.; Le Quéré, C.; Manizza, M.; Mazloff, M.; Monteiro, P. M. S.; Terhaar, J. The Southern Ocean Carbon Cycle 1985–2018: Mean, Seasonal Cycle, Trends, and Storage. Global Biogeochemical Cycles 2023, 37 (11), e2023GB007848. doi.org/10.1029/2023GB007848.

242. [REcoM, RECCAP] Yasunaka, S.; Manizza, M.; Terhaar, J.; Olsen, A.; Yamaguchi, R.; Landschützer, P.; Watanabe, E.; Carroll, D.; Adiwira, H.; Müller, J. D.; Hauck, J. An Assessment of CO2 Uptake in the Arctic Ocean From 1985 to 2018. Global Biogeochemical Cycles. doi.org/10.1029/2023GB007806. 

241. Treguier, A. M., de Boyer Montégut, C., Bozec, A., Chassignet, E. P., Fox-Kemper, B., McC. Hogg, A., Iovino, D., Kiss, A. E., Le Sommer, J., Li, Y., Lin, P., Lique, C., Liu, H., Serazin, G., Sidorenko, D., Wang, Q., Xu, X., and Yeager, S.: The mixed-layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies, Geosci. Model Dev., 16, 3849–3872, doi.org/10.5194/gmd-16-3849-2023, 2023.

240. [FESOM2] Gürses, Ö., Oziel, L., Karakuş, O., Sidorenko, D., Völker, C., Ye, Y., Zeising, M., Butzin, M., and Hauck, J.: Ocean biogeochemistry in the coupled ocean–sea ice–biogeochemistry model FESOM2.1–REcoM3, Geosci. Model Dev., 16, 4883–4936, doi.org/10.5194/gmd-16-4883-2023, 2023.

239. Willmes, S., Heinemann, G., and Schnaase, F.: Patterns of wintertime Arctic sea-ice leads and their relation to winds and ocean currents, The Cryosphere, 17, 3291–3308, doi.org/10.5194/tc-17-3291-2023, 2023.

238. [FESOM2] Juricke, S., Bellinghausen, K., Danilov, S., Kutsenko, A., & Oliver, M. (2023). Scale analysis on unstructured grids: Kinetic energy and dissipation power spectra on triangular meshes. Journal of Advances in Modeling Earth Systems, 15, e2022MS003280. doi.org/10.1029/2022MS003280

237. Danek, C., Scholz, P., & Lohmann, G. (2023). Decadal variability of eddy temperature fluxes in the Labrador Sea. Ocean Modelling, 102170. https://doi.org/10.1016/j.ocemod.2023.102170

236. Johnson, A., Aschwanden, A., Albrecht, T., & Hock, R. (2023). Range of 21st century ice mass changes in the Filchner-Ronne region of Antarctica. Journal of Glaciology, 1-11. doi:10.1017/jog.2023.10

235. [FESOM2] Song, P., Sidorenko, D., Scholz, P., Thomas, M., and Lohmann, G.: The tidal effects in the Finite-volumE Sea ice–Ocean Model (FESOM2.1): a comparison between parameterised tidal mixing and explicit tidal forcing, Geosci. Model Dev., 16, 383–405, doi.org/10.5194/gmd-16-383-2023, 2023.

234. [AWI-CM3] Pithan, F., Athanase, M., Dahlke, S., Sánchez-Benítez, A., Shupe, M. D., Sledd, A., Streffing, J., Svensson, G., and Jung, T.: Nudging allows direct evaluation of coupled climate models with in situ observations: a case study from the MOSAiC expedition, Geosci. Model Dev., 16, 1857–1873, doi.org/10.5194/gmd-16-1857-2023, 2023.

233. [AWI-CM3] Shi, J., Stepanek, C., Sein, D., Streffing, J., & Lohmann, G. (2023). East Asian summer precipitation in AWI-CM3: Comparison with observations and CMIP6 models. International Journal of Climatology, 1– 16. doi.org/10.1002/joc.8075

2022

232. [REcoM] Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., et al. (>50 authors) (2022). Global Carbon Budget 2022. Earth System Science Data, 14(11), 4811–4900. doi.org/10.5194/essd-14-4811-2022

231. Rogge, A., Janout, M., Loginova, N. et al. Carbon dioxide sink in the Arctic Ocean from cross-shelf transport of dense Barents Sea water. Nat. Geosci. (2022). doi.org/10.1038/s41561-022-01069-z

230. Beech, N., Rackow, T., Semmler, T. et al. Long-term evolution of ocean eddy activity in a warming world. Nat. Clim. Chang. 12, 910–917 (2022). doi.org/10.1038/s41558-022-01478-3

229. [AWI-CM3] Streffing, et al.,: AWI-CM3 coupled climate model: description and evaluation experiments for a prototype post-CMIP6 model, Geosci. Model Dev., 15, 6399–6427, doi.org/10.5194/gmd-15-6399-2022, 2022.

228. [FESOM2] Kirillov, S., Dmitrenko, I., Babb, D. G., Ehn, J. K., Koldunov, N., Rysgaard, S., Jensen, D., and Barber, D. G.: The role of oceanic heat flux in reducing thermodynamic ice growth in Nares Strait and promoting earlier collapse of the ice bridge, Ocean Sci., 18, 1535–1557, doi.org/10.5194/os-18-1535-2022, 2022.

227. [FESOM2] Uchida, T., et al.,: Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models, Geosci. Model Dev., 15, 5829–5856, doi.org/10.5194/gmd-15-5829-2022, 2022.

226. Ding, M., Liu, H., Lin, P., Hu, A., Meng, Y., Li, Y., & Liu, K. (2022). Overestimated eddy kinetic energy in the eddy-rich regions simulated by eddy-resolving global ocean–sea ice models. Geophysical Research Letters, 49, e2022GL098370. doi.org/10.1029/2022GL098370

225. Wang, Q., & Danilov, S. (2022). A Synthesis of the Upper Arctic Ocean Circulation During 2000-2019: Understanding the Roles of Wind Forcing and Sea Ice Decline. Frontiers in Marine Science, 9, 863204.https://doi.org/10.3389/fmars.2022.863204

224. Stolzenberger, S., Rietbroek, R., Wekerle, C., Uebbing, B., & Kusche, J. (2022). Simulated signatures of Greenland melting in the North Atlantic: A model comparison with Argo floats, satellite observations, and ocean reanalysis. Journal of Geophysical Research: Oceans, 127, e2022JC018528. doi.org/10.1029/2022JC018528

223. Dima, M., Lohmann, G., Ionita, M. et al. AMOC modes linked with distinct North Atlantic deep water formation sites. Clim Dyn 59, 837–849 (2022). doi.org/10.1007/s00382-022-06156-w

222. Martin, T., Biastoch, A., Lohmann, G., Mikolajewicz, U., & Wang, X. (2022). On timescales and reversibility of the ocean's response to enhanced Greenland Ice Sheet melting in comprehensive climate models. Geophysical Research Letters, 49, e2021GL097114. doi.org/10.1029/2021GL097114

221. Galvez, D.S.; Papenmeier, S.; Sander, L.; Hass, H.C.; Fofonova, V.; Bartholomä, A.; Wiltshire, K.H. Ensemble Mapping and Change Analysis of the Seafloor Sediment Distribution in the Sylt Outer Reef, German North Sea from 2016 to 2018. Water 2021, 13, 2254. doi.org/10.3390/w13162254

220. Sánchez-Benítez, A., Goessling, H., Pithan, F., Semmler, T., & Jung, T. (2022). The July 2019 European Heat Wave in a Warmer Climate: Storyline Scenarios with a Coupled Model Using Spectral Nudging. Journal of Climate, 35(8), 2373-2390. https://doi.org/10.1175/JCLI-D-21-0573.1

219. von Appen, Wilken, Till M. Baumann, Markus Janout, Nikolay Koldunov, Yueng-Djern Lenn, Robert Pickart, Robert Scott, and Qiang Wang. "Eddies and the distribution of Eddy Kinetic Energy in the Arctic Ocean." Oceanography 35, no. 2 (2022). doi.org/10.5670/oceanog.2022.122

218. Hutter, N., Bouchat, A., Dupont, F., Dukhovskoy, D., Koldunov, N., Lee, Y. J., et al. (2022). Sea Ice Rheology Experiment (SIREx): 2. Evaluating linear kinematic features in high-resolution sea ice simulations. Journal of Geophysical Research: Oceans, 127, e2021JC017666. doi.org/10.1029/2021JC017666

217. Bouchat, A., Hutter, N., Chanut, J., Dupont, F., Dukhovskoy, D., Garric, G., et al. (2022). Sea Ice Rheology Experiment (SIREx): 1. Scaling and statistical properties of sea-ice deformation fields. Journal of Geophysical Research: Oceans, 127, e2021JC017667. doi.org/10.1029/2021JC017667

216. Wang, Q., Shu, Q., Danilov, S., & Sidorenko, D. (2022). An extreme event of enhanced Arctic Ocean export west of Greenland caused by the pronounced dynamic sea level drop in the North Atlantic subpolar gyre in the mid-to-late 2010s. Environmental Research Letters, 17(4), 044046. doi.org/10.1088/1748-9326/ac5562

215. Miriam Seifert, Cara Nissen, Björn Rost, Judith Hauck; Cascading effects augment the direct impact of CO2 on phytoplankton growth in a biogeochemical model. Elementa: Science of the Anthropocene 4 January 2022; 10 (1): 00104. doi: doi.org/10.1525/elementa.2021.00104

214. Neder, C., Fofonova, V., Androsov, A., Kuznetsov, I., Abele, D., Falk, U., ... & Jerosch, K. (2022). Modelling suspended particulate matter dynamics at an Antarctic fjord impacted by glacier melt. Journal of Marine Systems, 231, 103734.

213. Reifenberg, S. F. and Goessling, H. F.: Predictability of Arctic sea ice drift in coupled climate models, The Cryosphere, 16, 2927–2946, doi.org/10.5194/tc-16-2927-2022, 2022.

212. Contzen, J., Dickhaus, T., and Lohmann, G.: Variability and extremes: statistical validation of the Alfred Wegener Institute Earth System Model (AWI-ESM), Geosci. Model Dev., 15, 1803–1820, doi.org/10.5194/gmd-15-1803-2022, 2022.

211. Zhong, Y., Shi, X., Yang, H. et al. Humidification of Central Asia and equatorward shifts of westerly winds since the late Pliocene. Commun Earth Environ 3, 274 (2022). doi.org/10.1038/s43247-022-00604-5

210. Askjær, T. G., Zhang, Q., Schenk, F., Ljungqvist, F. C., Lu, Z., Brierley, C. M., ... & Yang, H. (2022). Multi-centennial Holocene climate variability in proxy records and transient model simulations. Quaternary Science Reviews, 296, 107801. https://doi.org/10.1016/j.quascirev.2022.107801

209. Nissen, C., Timmermann, R., Hoppema, M. et al. Abruptly attenuated carbon sequestration with Weddell Sea dense waters by 2100. Nat Commun 13, 3402 (2022). doi.org/10.1038/s41467-022-30671-3

208. Oziel, L., Schourup-Kristensen, V., Wekerle, C., & Hauck, J. (2022). The pan-Arctic continental slope as an intensifying conveyer belt for nutrients in the central Arctic Ocean (1985–2015). Global Biogeochemical Cycles, 36, e2021GB007268. doi.org/10.1029/2021GB007268 

207. Friedlingstein, et al., Global Carbon Budget 2021, Earth Syst. Sci. Data, 14, 1917–2005, doi.org/10.5194/essd-14-1917-2022, 2022.

206. [CMIP6] Khosravi, N., Wang, Q., Koldunov, N., Hinrichs, C., Semmler, T., Danilov, S., & Jung, T. (2022). The Arctic Ocean in CMIP6 models: Biases and projected changes in temperature and salinity. Earth's Future, 10, e2021EF002282. doi.org/10.1029/2021EF002282

205. [CMIP6] Rackow, T., Danilov, S., Goessling, H.F. et al. Delayed Antarctic sea-ice decline in high-resolution climate change simulations. Nat Commun 13, 637 (2022). doi.org/10.1038/s41467-022-28259-y

204. Yang H, Krebs-Kanzow U, Kleiner T, Sidorenko D, Rodehacke CB, Shi X, et al. (2022) Impact of paleoclimate on present and future evolution of the Greenland Ice Sheet. PLoS ONE 17(1): e0259816. doi.org/10.1371/journal.pone.0259816

203. S. Danilov, C. Mehlmann, V. Fofonova, On discretizing sea-ice dynamics on triangular meshes using vertex, cell or edge velocities, Ocean Modelling, 2021, 101937, doi.org/10.1016/j.ocemod.2021.101937.

202. Yang, H., Lu, J., Wang, Q. et al. Decoding the dynamics of poleward shifting climate zones using aqua-planet model simulations. Clim Dyn (2022). doi.org/10.1007/s00382-021-06112-0

2021

201 Fadeev, E., Rogge, A., Ramondenc, S. et al. Sea ice presence is linked to higher carbon export and vertical microbial connectivity in the Eurasian Arctic Ocean. Commun Biol 4, 1255 (2021). doi.org/10.1038/s42003-021-02776-w

200 von Appen, W. J., Waite, A. M., Bergmann, M., Bienhold, C., Boebel, O., Bracher, A., ... & Boetius, A. (2021). Sea-ice derived meltwater stratification slows the biological carbon pump: results from continuous observations. Nature communications, 12(1), 1-16. 

199 Karakuş, O., Völker, C., Iversen, M., Hagen, W., Wolf-Gladrow, D., Fach, B., & Hauck, J. (2021). Modeling the impact of macrozooplankton on carbon export production in the Southern Ocean. Journal of Geophysical Research: Oceans, 126, e2021JC017315. doi.org/10.1029/2021JC017315

198 Tang, Q., L. Mu, H. F. Goessling, T. Semmler, L. Nerger (2021) Strongly coupled data assimilation of ocean observations into an ocean-atmosphere model, Geophys. Res. Lett, 48, e2021GL094941, ​https://doi.org/10.1029/2021GL094941

197 [FESOM2] Mehlmann, C., Danilov, S., Losch, M., Lemieux, J. F., Hutter, N., Richter, T., et al. (2021). Simulating linear kinematic features in viscous-plastic sea ice models on quadrilateral and triangular grids with different variable staggering. Journal of Advances in Modeling Earth Systems, 13, e2021MS002523. doi.org/10.1029/2021MS002523

196 [FESOM2] Scholz, P., Sidorenko, D., Danilov, S., Wang, Q., Koldunov, N., Sein, D., and Jung, T.: Assessment of the Finite VolumE Sea Ice Ocean Model (FESOM2.0), Part II: Partial bottom cells, embedded sea ice and vertical mixing library CVMIX, Geosci. Model Dev., doi.org/10.5194/gmd-2021-94, 2021. 

195 [CMIP6] Semmler, T., Jungclaus, J., Danek, C., Goessling, H. F., Koldunov, N. V., Rackow, T., & Sidorenko, D. (2021). Ocean model formulation influences transient climate response. Journal of Geophysical Research: Oceans, 126, e2021JC017633. doi.org/10.1029/2021JC017633

194 [FESOM-C] Fofonova, V., Kärnä, T., Klingbeil, K., Androsov, A., Kuznetsov, I., Sidorenko, D., Danilov, S., Burchard, H., and Wiltshire, K. H.: Plume spreading test case for coastal ocean models, Geosci. Model Dev., doi.org/10.5194/gmd-2020-438, 2021.

193 Hinrichs, C., Wang, Q., Koldunov, N., Mu, L., Semmler, T., Sidorenko, D., & Jung, T. (2021). Atmospheric wind biases: A challenge for simulating the Arctic Ocean in coupled models? Journal of Geophysical Research: Oceans, 126, e2021JC017565. doi.org/10.1029/2021JC017565

192 [FESOM2] Danilov, S., Koldunov, N. V., Sidorenko, D., Scholz, P., & Wang, Q. (2021). On the damping time scale of EVP sea ice dynamics. Journal of Advances in Modeling Earth Systems, 13, e2021MS002561. doi.org/10.1029/2021MS002561

191 Koenigk, T., Fuentes-Franco, R., Meccia, V.L. et al. Deep mixed ocean volume in the Labrador Sea in HighResMIP models. Clim Dyn 57, 1895–1918 (2021). doi.org/10.1007/s00382-021-05785-x

190 Berdahl, M., Leguy, G., Lipscomb, W. H., and Urban, N. M.: Statistical emulation of a perturbed basal melt ensemble of an ice sheet model to better quantify Antarctic sea level rise uncertainties, The Cryosphere, 15, 2683–2699, doi.org/10.5194/tc-15-2683-2021, 2021.

189 Janout, M. A., Hellmer, H. H., Hattermann, T., Huhn, O., Sültenfuss, J., Østerhus, S., et al. (2021). FRIS revisited in 2018: On the circulation and water masses at the Filchner and Ronne ice shelves in the southern Weddell Sea. Journal of Geophysical Research: Oceans, 126, e2021JC017269. doi.org/10.1029/2021JC017269

188 Hofmann, Z., von Appen, W.-J., & Wekerle, C. (2021). Seasonal and mesoscale variability of the two Atlantic Water recirculation pathways in Fram Strait. Journal of Geophysical Research: Oceans, 126, e2020JC017057. doi.org/10.1029/2020JC017057

187 Niu, L., Lohmann, G., Gierz, P., Gowan, E. J., & Knorr, G. (2021). Coupled climate-ice sheet modelling of MIS-13 reveals a sensitive Cordilleran Ice Sheet. Global and Planetary Change, 200, 103474.

186 Schourup-Kristensen, V., Wekerle, C., Danilov, S., & Völker, C. (2021). Seasonality of mesoscale phytoplankton control in eastern Fram Strait. Journal of Geophysical Research: Oceans, 126, e2021JC017279. doi.org/10.1029/2021JC017279

185 Wang, S., Wang, Q., Shu, Q., Song, Z., Lohmann, G., Danilov, S., & Qiao, F. (2021). Nonmonotonic change of the Arctic Ocean freshwater storage capability in a warming climate. Geophysical Research Letters, 48, e2020GL090951. doi.org/10.1029/2020GL090951

184 Wang, Q., Danilov, S., Sidorenko, D. and Wang, X., 2021. Circulation Pathways and Exports of Arctic River Runoff Influenced by Atmospheric Circulation Regimes. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2021.707593

183 Wang, Q., Danilov, S., Mu, L., Sidorenko, D., and Wekerle, C.: Lasting impact of winds on Arctic sea ice through the ocean's memory, The Cryosphere. doi.org/10.5194/tc-2021-50, 2021. 

182 [FESOM2] Sidorenko, D., Danilov, S., Streffing, J., Fofonova, V., Goessling, H., Scholz, P., et al. (2021). AMOC variability and watermass transformations in the AWI climate model. Journal of Advances in Modeling Earth Systems, 13, e2021MS002582. doi.org/10.1029/2021MS002582

181 Wang, X., Zhang, Z., Wang, X. et al. Impacts of strong wind events on sea ice and water mass properties in Antarctic coastal polynyas. Clim Dyn (2021). doi.org/10.1007/s00382-021-05878-7

180 [CMIP6]. Cai, Z., You, Q., Wu, F., Chen, H. W., Chen, D., & Cohen, J. (2021). Arctic warming revealed by multiple CMIP6 models: evaluation of historical simulations and quantification of future projection uncertainties, Journal of Climate, 1-52. doi.org/10.1175/JCLI-D-20-0791.1

179 [FESOM2].  Zampieri, L., Kauker, F., Fröhle, J., Sumata, H., Hunke, E. C., & Goessling, H. F. (2021). Impact of sea‐ice model complexity on the performance of an unstructured‐mesh sea‐ice/ocean model under different atmospheric forcings. Journal of Advances in Modeling Earth Systems, 13, e2020MS002438. doi.org/10.1029/2020MS002438

178.  Wang, Q. (2021). Stronger variability in the Arctic Ocean induced by sea ice decline in a warming climate: Freshwater storage, dynamic sea level and surface circulation. Journal of Geophysical Research: Oceans, 126, e2020JC016886. doi.org/10.1029/2020JC016886

177.  Wang, Q., Ricker, R., & Mu, L. (2021). Arctic sea ice decline preconditions events of anomalously low sea ice volume export through Fram Strait in the early 21st century. Journal of Geophysical Research: Oceans, 126, e2020JC016607. doi.org/10.1029/2020JC016607

176. Wang, S., Gong, X., Qiao, F., Gowan, E., Streffing, J., & Lohmann, G. (2021). The impact of non-breaking surface waves in upper-ocean temperature simulations of the Last Glacial Maximum. Environmental Research Letters.

175 [CMIP6]. Almazroui, M., Islam, M.N., Saeed, F. et al. Projected Changes in Temperature and Precipitation Over the United States, Central America, and the Caribbean in CMIP6 GCMs. Earth Syst Environ (2021). doi.org/10.1007/s41748-021-00199-5

174. Kageyama, M., et al.,: A multi-model CMIP6-PMIP4 study of Arctic sea ice at 127 ka: sea ice data compilation and model differences, Clim. Past, 17, 37–62, doi.org/10.5194/cp-17-37-2021, 2021.

173. Starr, A., Hall, I.R., Barker, S. et al. Antarctic icebergs reorganize ocean circulation during Pleistocene glacials. Nature 589, 236–241 (2021). doi.org/10.1038

172 [CMIP6]. Otto-Bliesner, B. L., et al.,: Large-scale features of Last Interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4), Clim. Past, 17, 63–94, doi.org/10.5194/cp-17-63-2021, 2021.

2020

171 [FESOM2]. Lohmann, G., Butzin, M., Eissner, N., Shi, X., & Stepanek, C. (2020). Abrupt climate and weather changes across time scales. Paleoceanography and Paleoclimatology, 35, e2019PA003782. doi.org/10.1029/2019PA003782

170 [FESOM2]. Sidorenko, D., Danilov, S., Fofonova, V., Cabos, W., Koldunov, N., Scholz, P., et al. (2020). AMOC, watermass transformations and their responses to changing resolution in the Finite‐volumE Sea ice–Ocean Model. Journal of Advances in Modeling Earth Systems, 12, e2020MS002317. Accepted Author Manuscript. doi.org/10.1029/2020MS002317

169 [FESOM2]. Juricke, S., Danilov, S., Koldunov, N., Oliver, M., Sein, D. V., Sidorenko, D., & Wang, Q. (2020). A kinematic kinetic energy backscatter parametrization: From implementation to global ocean simulations. Journal of Advances in Modeling Earth Systems, 12, e2020MS002175. doi.org/10.1029/2020MS002175

168. Friedlingstein, P., et al.,: Global Carbon Budget 2020, Earth Syst. Sci. Data, 12, 3269–3340, doi.org/10.5194/essd-12-3269-2020, 2020.

167 [FESOM2]. Vorrath, M.-E., Müller, J., Rebolledo, L., Cárdenas, P., Shi, X., Esper, O., Opel, T., Geibert, W., Muñoz, P., Haas, C., Kuhn, G., Lange, C. B., Lohmann, G., and Mollenhauer, G.: Sea ice dynamics in the Bransfield Strait, Antarctic Peninsula, during the past 240 years: a multi-proxy intercomparison study, Clim. Past, 16, 2459–2483, doi.org/10.5194/cp-16-2459-2020, 2020.

166 [FESOM-C]. Androsov, A., Voltzinger, N., Kuznetsov, I., & Fofonova, V. (2020). Modeling of Nonhydrostatic Dynamics and Hydrology of the Lombok Strait. Water, 12(11), 3092.  doi.org/10.3390/w12113092

165. Hauck, J., Zeising, M., Le Quéré, C., Gruber, N., Bakker, D. C., Bopp, L., ... & Lenton, A. (2020). Consistency and challenges in the ocean carbon sink estimate for the Global Carbon Budget. Frontiers in Marine Science, 7, 852. doi.org/10.3389/fmars.2020.571720

164. Wekerle, C., Hattermann, T., Wang, Q., Crews, L., von Appen, W.-J., and Danilov, S.: Properties and dynamics of mesoscale eddies in Fram Strait from a comparison between two high-resolution ocean–sea ice models, Ocean Sci., 16, 1225–1246, doi.org/10.5194/os-16-1225-2020, 2020.

163 [HighResMIP]. Schiemann, R., Athanasiadis, P., Barriopedro, D., Doblas-Reyes, F., Lohmann, K., Roberts, M. J., Sein, D. V., Roberts, C. D., Terray, L., and Vidale, P. L.: Northern Hemisphere blocking simulation in current climate models: evaluating progress from the Climate Model Intercomparison Project Phase 5 to 6 and sensitivity to resolution, Weather Clim. Dynam., 1, 277–292, doi.org/10.5194/wcd-1-277-2020, 2020.

162. Wehner, M. (2020). Characterization of long period return values of extreme daily temperature and precipitation in the CMIP6 models: Part 2, projections of future change. Weather and Climate Extremes, 100284. doi.org/10.1016/j.wace.2020.100284

161. Wehner, M., Gleckler, P., & Lee, J. (2020). Characterization of long period return values of extreme daily temperature and precipitation in the CMIP6 models: Part 1, model evaluation. Weather and Climate Extremes, 100283. doi.org/10.1016/j.wace.2020.100283

160. van Westen, R. M., Dijkstra, H. A., van der Boog, C. G., Katsman, C. A., James, R. K., Bouma, T. J., ... & Zijlema, M. (2020). Ocean model resolution dependence of Caribbean sea-level projections. Scientific Reports, 10(1), 1-11.https://doi.org/10.1038/s41598-020-71563-0

159. Nerger, L., Tang, Q., and Mu, L.: Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: example of AWI-CM (AWI-CM-PDAF 1.0), Geosci. Model Dev., 13, 4305–4321, doi.org/10.5194/gmd-13-4305-2020, 2020.

158 [OMIP]. Chassignet, E. P., Yeager, S. G., Fox-Kemper, B., Bozec, A., Castruccio, F., Danabasoglu, G., Kim, W. M., Koldunov, N., Li, Y., Lin, P., Liu, H., Sein, D., Sidorenko, D., Wang, Q., and Xu, X.: Impact of horizontal resolution on global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2), Geosci. Model Dev., doi.org/10.5194/gmd-2019-374, in review, 2020.

157 [CMIP6].  Semmler, T., Danilov, S., Gierz, P., Goessling, H. F., Hegewald, J., Hinrichs, C., et al. (2020). Simulations for CMIP6 with the AWI climate model AWI‐CM‐1‐1. Journal of Advances in Modeling Earth Systems, 12, e2019MS002009. doi.org/10.1029/2019MS002009

156. Ackermann, L., Danek, C., Gierz, P., & Lohmann, G. (2020). AMOC recovery in a multicentennial scenario using a coupled atmosphere‐ocean‐ice sheet model. Geophysical Research Letters, 47, e2019GL086810. doi.org/10.1029/2019GL086810

155. Tang, Q., Mu, L., Sidorenko, D., Goessling, H., Semmler, T. and Nerger, L. (2020), Improving the ocean and atmosphere in a coupled ocean‐atmosphere model by assimilating satellite sea surface temperature and subsurface profile data. Q J R Meteorol Soc. Accepted Author Manuscript. doi:10.1002/qj.3885

154. Yang, H., Lohmann, G., Lu, J., Gowan, E. J., Shi, X., Liu, J., & Wang, Q. (2020). Tropical expansion driven by poleward advancing mid‐latitude meridional temperature gradients. Journal of Geophysical Research: Atmospheres, 125, e2020JD033158. doi.org/10.1029/2020JD033158

153 [HighResMIP]. Ponsoni, L., Massonnet, F., Docquier, D., Van Achter, G., and Fichefet, T.: Statistical predictability of the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations, The Cryosphere, 14, 2409–2428, doi.org/10.5194/tc-14-2409-2020, 2020.

152 [CMIP6]. Zhu, Y., R. Zhang, and J. Sun, 2020: North Pacific Upper-Ocean Cold Temperature Biases in CMIP6 Simulations and the Role of Regional Vertical Mixing. J. Climate, 33, 7523–7538, doi.org/10.1175/JCLI-D-19-0654.1.

151 [OMIP]. Tsujino, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Adcroft, A. J., Amaral, A. E., Arsouze, T., Bentsen, M., Bernardello, R., Böning, C. W., Bozec, A., Chassignet, E. P., Danilov, S., Dussin, R., Exarchou, E., Fogli, P. G., Fox-Kemper, B., Guo, C., Ilicak, M., Iovino, D., Kim, W. M., Koldunov, N., Lapin, V., Li, Y., Lin, P., Lindsay, K., Liu, H., Long, M. C., Komuro, Y., Marsland, S. J., Masina, S., Nummelin, A., Rieck, J. K., Ruprich-Robert, Y., Scheinert, M., Sicardi, V., Sidorenko, D., Suzuki, T., Tatebe, H., Wang, Q., Yeager, S. G., and Yu, Z.: Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2), Geosci. Model Dev. Discuss., doi.org/10.5194/gmd-2019-363, 2020.

150 [FESOM2]. Sidorenko, D., Danilov, S., Koldunov, N., Scholz, P., and Wang, Q.: Simple algorithms to compute meridional overturning and barotropic streamfunction on unstructured meshes, Geosci. Model Dev, doi.org/10.5194/gmd-2019-336, 2020.

149. Nakayama, Y., Timmermann, R., and H. Hellmer, H.: Impact of West Antarctic ice shelf melting on Southern Ocean hydrography, The Cryosphere, 14, 2205–2216, doi.org/10.5194/tc-14-2205-2020, 2020.

148 [FESOM2]. Wang, Q., Koldunov, N. V., Danilov, S., Sidorenko, D., Wekerle, C., Scholz, P., et al.. (2020). Eddy Kinetic Energy in the Arctic Ocean from a Global Simulation with a 1‐km Arctic. Geophysical Research Letters, 47, e2020GL088550. doi.org/10.1029/2020GL088550

147 [HighResMIP]. Schiemann, R., Athanasiadis, P., Barriopedro, D., Doblas-Reyes, F., Lohmann, K., Roberts, M. J., Sein, D. V., Roberts, C. D., Terray, L., and Vidale, P. L.: Northern Hemisphere blocking simulation in current climate models: evaluating progress from the Climate Model Intercomparison Project Phase 5 to 6 and sensitivity to resolution, Weather Clim. Dynam., 1, 277–292, doi.org/10.5194/wcd-1-277-2020, 2020.

146 [FESOM-C]. Sprong, P. A. A., Fofonova, V., Wiltshire, K. H., Neuhaus, S., Ludwichowski, K. U., Käse, L., ... & Metfies, K. (2020). Spatial dynamics of eukaryotic microbial communities in the German Bight. Journal of Sea Research, 101914.

145 [HighResMIP]. Docquier, D., Fuentes-Franco, R., Koenigk, T., & Fichefet, T. (2020). Sea Ice—Ocean Interactions in the Barents Sea Modeled at Different Resolutions. Frontiers in Earth Science, 8, 172.

144. Bashmachnikov, I. L., Kozlov, I. E., Petrenko, L. A., Glock, N. I., & Wekerle, C. ( 2020). Eddies in the North Greenland Sea and Fram Strait from satellite altimetry, SAR and high‐resolution model data. Journal of Geophysical Research: Oceans, 125, e2019JC015832. doi.org/10.1029/2019JC015832

143 [HighResMIP]. Fabiano, F., Christensen, H.M., Strommen, K. et al. Euro-Atlantic weather Regimes in the PRIMAVERA coupled climate simulations: impact of resolution and mean state biases on model performance. Clim Dyn (2020). doi.org/10.1007/s00382-020-05271-w

142 [FESOM-C]. Kuznetsov, I., Androsov, A., Fofonova, V., Danilov, S., Rakowsky, N., Harig, S., & Wiltshire, K. H. (2020). Evaluation and Application of Newly Designed Finite Volume Coastal Model FESOM-C, Effect of Variable Resolution in the Southeastern North Sea. Water, 12(5), 1412. https://doi.org/10.3390/w12051412

141. Teschke, K., Pehlke, H., Siegel, V., Bornemann, H., Knust, R., and Brey, T.: An integrated compilation of data sources for the development of a marine protected area in the Weddell Sea, Earth Syst. Sci. Data, 12, 1003–1023, doi.org/10.5194/essd-12-1003-2020, 2020.

140. Xiao, K., Chen, M., Wang, Q. et al. Low-frequency sea level variability and impact of recent sea ice decline on the sea level trend in the Arctic Ocean from a high-resolution simulation. Ocean Dynamics (2020). doi.org/10.1007/s10236-020-01373-5

139. de la Vara, A., Cabos, W., Sein, D.V., Sidorenko D., Koldunov N.V., Koseki S., Soares P.M.M., Danilov S..  On the impact of atmospheric vs oceanic resolutions on the representation of the sea surface temperature in the South Eastern Tropical Atlantic. Clim Dyn (2020). doi.org/10.1007/s00382-020-05256-9

138. Mu, L., Nerger, L., Tang, Q., Loza, S. N., Sidorenko, D., Wang, Q., et al. ( 2020). Toward a data assimilation system for seamless sea ice prediction based on the AWI Climate Model. Journal of Advances in Modeling Earth Systems, 12, e2019MS001937. doi.org/10.1029/2019MS001937

137. Tekman, M. B., Wekerle, C., Lorenz, C., Primpke, S., Hasemann, C., Gerdts, G., & Bergmann, M. (2020). Tying up loose ends of microplastic pollution in the Arctic: Distribution from the sea surface, through the water column to deep-sea sediments at the HAUSGARTEN observatory. Environmental Science & Technology.

136. Androsov, A., Boebel, O., Schröter, J., Danilov, S., Macrander, A., & Ivanicu, I. ( 2020). Ocean bottom pressure variability: Can it be reliably modeled?. Journal of Geophysical Research: Oceans, 125, e2019JC015469. doi.org/10.1029/2019JC015469

135. Yang, H., Lohmann, G., Krebs‐Kanzow, U., Ionita, M., Shi, X., Sidorenko, D., et al. ( 2020). Poleward shift of the major ocean gyres detected in a warming climate. Geophysical Research Letters, 47, e2019GL085868. doi.org/10.1029/2019GL085868

134 [FESOM2]. Smolentseva, M., Danilov, S. Comparison of several high-order advection schemes for vertex-based triangular discretization. Ocean Dynamics (2020). doi.org/10.1007/s10236-019-01337-4

133. Semmler, T., Pithan, F. & Jung, T. Quantifying two-way influences between the Arctic and mid-latitudes through regionally increased CO2 concentrations in coupled climate simulations. Clim Dyn (2020). doi.org/10.1007/s00382-020-05171-z

132. Zhang, W., Wang, Q., Wang, X., & Danilov, S. ( 2020). Mechanisms Driving the Interannual Variability of the Bering Strait Throughflow. Journal of Geophysical Research: Oceans, 125. doi.org/10.1029/2019JC015308

131. Hirschi, J. J.‐M., Barnier, B., Böning, C., Biastoch, A., Blaker, A. T., Coward, A., et al ( 2020). The Atlantic meridional overturning circulation in high resolution models. Journal of Geophysical Research: Oceans, 125, e2019JC015522. doi.org/10.1029/2019JC015522

130. Wang, Q., Wekerle, C., Wang, X., Danilov, S., Koldunov, N., Sein, D., et al ( 2020). Intensification of the Atlantic Water supply to the Arctic Ocean through Fram Strait induced by Arctic sea ice decline. Geophysical Research Letters, 47, e2019GL086682. doi.org/10.1029/2019GL086682

129 [FESOM2]. Juricke, S., Danilov, S., Koldunov, N. V., Oliver, M., & Sidorenko, D. ( 2020). Ocean kinetic energy backscatter parametrization on unstructured grids: Impact on global eddy‐permitting simulations. Journal of Advances in Modeling Earth Systems, 12, e2019MS001855. doi.org/10.1029/2019MS001855

2019

128 [FESOM-C]. Fofonova, V., Androsov, A., Sander, L., Kuznetsov, I., Amorim, F., Hass, H. C., and Wiltshire, K. H.: Non-linear aspects of the tidal dynamics in the Sylt-Rømø Bight, south-eastern North Sea, Ocean Sci., 15, 1761–1782, doi.org/10.5194/os-15-1761-2019, 2019.

127. Zampieri, L., & Goessling, H. F. ( 2019). Sea ice targeted geoengineering can delay Arctic sea ice decline but not global warming. Earth's Future. 7. doi.org/10.1029/2019EF001230

126. Müller, F. L., Dettmering, D., Wekerle, C., Schwatke, C., Passaro, M., Bosch, W., and Seitz, F.: Geostrophic currents in the northern Nordic Seas from a combination of multi-mission satellite altimetry and ocean modeling, Earth Syst. Sci. Data, 11, 1765–1781, doi.org/10.5194/essd-11-1765-2019, 2019.

125. Rackow, T, Juricke, S. Flow‐dependent stochastic coupling for climate models with high ocean‐to‐atmosphere resolution ratio. Q J R Meteorol Soc. 2019; 1– 17. doi.org/10.1002/qj.3674

124 [FESOM2]. Scholz, P., Sidorenko, D., Gurses, O., Danilov, S., Koldunov, N., Wang, Q., Sein, D., Smolentseva, M., Rakowsky, N., and Jung, T.: Assessment of the Finite-volumE Sea ice-Ocean Model (FESOM2.0) – Part 1: Description of selected key model elements and comparison to its predecessor version, Geosci. Model Dev., 12, 4875–4899, doi.org/10.5194/gmd-12-4875-2019, 2019.

123 [FESOM2]. Sidorenko, D., Goessling, H. F., Koldunov, N. V., Scholz, P., Danilov, S., Barbi, D., et al (2019). Evaluation of FESOM2.0 coupled to ECHAM6.3: Pre‐industrial and HighResMIP simulations. Journal of Advances in Modeling Earth Systems, 11. doi.org/10.1029/2019MS001696

122. Chaabani, S., López-González, P. J., Casado-Amezú, P., Pehlke, H., Weber, L., Martínez-Baraldés, I., & Jerosch, K. (2019). Ecological niche modelling of cold-water corals in the Southern Ocean (N Antarctic), present distribution and future projections due to temperature changes. Marine Ecology Progress Series, 628, 73-93.

121. Schnaase, F., & Timmermann, R. (2019). Representation of shallow grounding zones in an ice shelf-ocean model with terrain-following coordinates. Ocean Modelling, 101487.  doi.org/10.1016/j.ocemod.2019.101487

120. Rahaman, H., U. Srinivasu, S. Panickal, J. V. Durgadoo, S. M. Griffies, M. Ravichandran, A. Bozec et al. "An assessment of the Indian Ocean mean state and seasonal cycle in a suite of interannual CORE-II simulations." Ocean Modelling (2019): 101503. https://doi.org/10.1016/j.ocemod.2019.101503

119.  Q., Wang, Wang, X., Wekerle, C., Danilov, S., Jung, T., Koldunov, N., Lind, S., Sein, D., Shu, Q., Sidorenko D. (2019), Ocean heat transport into the Barents Sea: Distinct controls on the upward trend and interannual variability. Geophys. Res. Lett., 46. doi.org/10.1029/2019GL083837

118. Gürses, Ö., Kolatschek, V., Wang, Q., and Rodehacke, C. B.: Brief communication: A submarine wall protecting the Amundsen Sea intensifies melting of neighboring ice shelves, The Cryosphere, 13, 2317–2324, doi.org/10.5194/tc-13-2317-2019, 2019.

117 [FESOM2]. Koldunov, N. V., Aizinger, V., Rakowsky, N., Scholz, P., Sidorenko, D., Danilov, S., and Jung, T.: Scalability and some optimization of the Finite-volumE Sea ice–Ocean Model, Version 2.0 (FESOM2), Geosci. Model Dev., 12, 3991–4012, doi.org/10.5194/gmd-12-3991-2019, 2019.

116 [FESOM-C]. Androsov, A., Fofonova, V., Kuznetsov, I., Danilov, S., Rakowsky, N., Harig, S., Brix, H., and Wiltshire, K. H.(2019). FESOM-C v.2 : coastal dynamics on hybrid unstructured meshes, Geosci. Model Dev., 12, 1009-1028, doi.org/10.5194/gmd-12-1009-2019.

115 [FESOM2]. Danilov, S., & Kutsenko, A. (2019). On the geometric origin of spurious waves in finite-volume discretizations of shallow water equations on triangular meshes. Journal of Computational Physics, 108891.

114. Muilwijk, M., Ilicak, M., Cornish, S. B., Danilov, S., Gelderloos, R., Gerdes, R., et al (2019). Arctic Ocean response to Greenland Sea wind anomalies in a suite of model simulations. Journal of Geophysical Research: Oceans, 124. doi.org/10.1029/2019JC015101

113. Rackow, T., Sein, D. V., Semmler, T., Danilov, S., Koldunov, N. V., Sidorenko, D., Wang, Q., and Jung, T.: Sensitivity of deep ocean biases to horizontal resolution in prototype CMIP6 simulations with AWI-CM1.0, Geosci. Model Dev., 12, 2635-2656, doi.org/10.5194/gmd-12-2635-2019, 2019.

112. Docquier, D., Grist, J. P., Roberts, M. J., Roberts, C. D., Semmler, T., Ponsoni, L., ... & Bellucci, A. (2019). Impact of model resolution on Arctic sea ice and North Atlantic Ocean heat transport. Climate Dynamics, 1-29.

111 [FESOM2]. Juricke, S., Danilov, S., Kutsenko, A., & Oliver, M. (2019). Ocean kinetic energy backscatter parametrizations on unstructured grids: Impact on mesoscale turbulence in a channel. Ocean Modelling.

110. Lohmann, G.; Lembke-Jene, L.; Tiedemann, R.; Gong, X.; Scholz, P.; Zou, J.; Shi, X. Challenges in the Paleoclimatic Evolution of the Arctic and Subarctic Pacific since the Last Glacial Period—The Sino–German Pacific–Arctic Experiment (SiGePAX). Challenges 2019, 10, 13.

109 [FESOM2]. Koldunov, N.V., Danilov, S., Sidorenko, D., Hutter, N., Losch, M., Goessling, H., Rakowsky, N., Scholz, P., Sein, D., Wang, Q. and Jung, T., Fast EVP solutions in a high‐resolution sea ice model, J. Adv. Model. Earth Syst., 11, 2019, doi.org/10.1029/2018MS001485

108. Müller, F. L., Wekerle, C., Dettmering, D., Passaro, M., Bosch, W., and Seitz, F.: Dynamic ocean topography of the northern Nordic seas: a comparison between satellite altimetry and ocean modeling, The Cryosphere, 13, 611-626, doi.org/10.5194/tc-13-611-2019, 2019.

107. Wang, Q., Marshall, J., Scott, J., Meneghello, G., Danilov, S., & Jung, T. (2019). On the Feedback of Ice–Ocean Stress Coupling from Geostrophic Currents in an Anticyclonic Wind Regime over the Beaufort Gyre. Journal of Physical Oceanography, 49(2), 369-383.

106. Wang, S., Wang, Q., Shu, Q., Scholz, P., Lohmann, G., & Qiao, F. (2019). Improving the Upper‐ocean Temperature in an Ocean Climate Model (FESOM 1.4): Shortwave Penetration vs. Mixing Induced by Non‐breaking Surface Waves. Journal of Advances in Modeling Earth Systems.

105. Danek, C., Scholz, P., & Lohmann, G. (2019). Effects of high resolution and spinup time on modeled North Atlantic circulation. Journal of Physical Oceanography, (2019).

104. Wang, Q., C. Wekerle, S. Danilov, D. Sidorenko, N. Koldunov, D. Sein, B. Rabe, and T. Jung, (2018): Recent sea ice decline did not significantly increase the total liquid freshwater content of the Arctic OceanJournal of Climate, doi.org/10.1175/JCLI-D-18-0237.1

2018

103. Chevallier, M., Massonnet, F., Goessling, H., Guémas, V., & Jung, T. (2019). The Role of Sea Ice in Sub-seasonal Predictability. In Sub-Seasonal to Seasonal Prediction (pp. 201-221). Elsevier.

102. Goessling, H. F., & Jung, T. (2018). A probabilistic verification score for contours: Methodology and application to Arctic ice‐edge forecasts. Quarterly Journal of the Royal Meteorological Society.

101. Cruz-García, R., Guemas, V., Chevallier, M., & Massonnet, F. (2018). An assessment of regional sea ice predictability in the Arctic ocean. Climate Dynamics, 1-14.

100. Fadeev, E., Salter, I., Schourup-Kristensen, V., Nöthig, E. M., Metfies, K., Engel, A., ... & Bienhold, C. (2018). Microbial communities in the East and West Fram Strait during sea-ice melting season. Frontiers in Marine Science, 5, 429.

99. He, S., Knudsen, E. M., Thompson, D. W., & Furevik, T. (2018). Evidence for Predictive Skill of High‐Latitude Climate Due to Midsummer Sea Ice Extent Anomalies. Geophysical Research Letters, 45(17), 9114-9122.

98. Aydoğdu, A., Pinardi, N., Özsoy, E., Danabasoglu, G., Gürses, Ö., & Karspeck, A. (2018). Circulation of the Turkish Straits System under interannual atmospheric forcing. Ocean Science, 14(5).

97. Androsov, A., Nerger, L., Schnur, R., Schröter, J., Albertella, A., Rummel, R., ... & Danilov, S. (2018). On the assimilation of absolute geodetic dynamic topography in a global ocean model: impact on the deep ocean state. Journal of Geodesy, 1-17. doi.org/10.1007/s00190-018-1151-1

96. Marchi, S., Fichefet, T., Goosse, H. et al. Reemergence of Antarctic sea ice predictability and its link to deep ocean mixing in global climate models, Clim Dyn (2018). doi.org/10.1007/s00382-018-4292-2

95. Aydoğdu, A., Hoar, T. J., Vukicevic, T., Anderson, J. L., Pinardi, N., Karspeck, A., Hendricks, J., Collins, N., Macchia, F., and Özsoy, E.: OSSE for a sustainable marine observing network in the Sea of Marmara, Nonlin. Processes Geophys., 25, 537-551, doi.org/10.5194/npg-25-537-2018, 2018.

94. van Caspel, M., Hellmer, H. H., & Mata, M. M. (2018). On the ventilation of Bransfield Strait deep basins. Deep Sea Research Part II: Topical Studies in Oceanography, 149, 25-30. 

93. Wekerle C, Krumpen T, Dinter T, von Appen W-J, Iversen MH and Salter I (2018) Properties of Sediment Trap Catchment Areas in Fram Strait: Results From Lagrangian Modeling and Remote Sensing. Front. Mar. Sci. 5:407. doi: 10.3389/fmars.2018.00407

92. Richter, M. E., von Appen, W.-J., and Wekerle, C.: Does the East Greenland Current exist in the northern Fram Strait?, Ocean Sci., 14, 1147-1165, doi.org/10.5194/os-14-1147-2018, 2018.

91. Schourup-Kristensen, V., Wekerle, C., Wolf-Gladrow, D. A., & Völker, C. (2018). Arctic Ocean biogeochemistry in the high resolution FESOM 1.4-REcoM2 model. Progress in Oceanography. doi.org/10.1016/j.pocean.2018.09.006

90. Sidorenko D., N. Koldunov, Q. Wang, S. Danilov, H. F. Goessling, O. Gurses, P. Scholz, D. V. Sein, E. Volodin, C. Wekerle, T. Jung (2018). Influence of a salt plume parameterization in a coupled climate model. Journal of Advances in Modeling Earth Systems, 10. doi.org/10.1029/2018MS001291

89. Sein, D. V., Koldunov, N. V., Danilov, S., Sidorenko, D., Wekerle, C., Cabos, W., Rackow T., Scholz P.,   Semmler T., Wang Q., Jung T. (2018). The relative influence of atmospheric and oceanic model resolution on the circulation of the North Atlantic Ocean in a coupled climate model. Journal of Advances in Modeling Earth Systems, 10.

88. Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H., Timmermann, R., & Hellmer, H. H. (2018). Future projections of Antarctic ice shelf melting based on CMIP5 scenarios. Journal of Climate, (2018).

87. Wang Q., C. Wekerle, S. Danilov, N.V. Koldunov, D. Sidorenko, D.V. Sein, B. Rabe, and T. Jung. (2018), Arctic Sea Ice Decline Significantly Contributed to the Unprecedented Liquid Freshwater Accumulation in the Beaufort Gyre of the Arctic Ocean, Geophys. Res. Lett., 45. doi.org/10.1029/2018GL077901

86. Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H., Timmermann, R., Hellmer, H. H., Hattermann, T., and Debernard, J. B.: Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4, Geosci. Model Dev., 11, 1257-1292, doi.org/10.5194/gmd-11-1257-2018, 2018.

85. Wang, Q., Wekerle, C., Danilov, S., Wang, X., and Jung, T.: A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4, Geosci. Model Dev., 11, 1229-1255, doi.org/10.5194/gmd-11-1229-2018, 2018.

84. S.M. Downes, P. Spence, A.M. Hogg, Understanding variability of the Southern Ocean overturning circulation in CORE-II models, Ocean Modelling, Available online 31 January 2018, ISSN 1463-5003, doi.org/10.1016/j.ocemod.2018.01.005.

83. Arne Biastoch, Dmitry Sein, Jonathan V. Durgadoo, Qiang Wang, Sergey Danilov, Simulating the Agulhas system in global ocean models – nesting vs. multi-resolution unstructured meshes, Ocean Modelling, Volume 121, January 2018, Pages 117-131, ISSN 1463-5003, doi: 10.1016/j.ocemod.2017.12.002.

2017

82. Sein, D. V., Koldunov, N. V., Danilov, S., Wang, Q., Sidorenko, D., Fast, I., Rackow, T., Cabos, W. and Jung, T. (2017), Ocean Modeling on A Mesh with Resolution Following the Local Rossby Radius. Journal of Advances in Modeling Earth Systems, 9, 2601–2614. doi:10.1002/2017MS001099

81. Wekerle, C., Wang, Q., von Appen, W.-J., Danilov, S., Schourup-Kristensen, V. and Jung, T. (2017), Eddy-Resolving Simulation of the Atlantic Water Circulation in the Fram Strait With Focus on the Seasonal Cycle. Journal of Geophysical Research: Oceans, 122, 8385–8405. doi:10.1002/2017JC012974

80. Timmermann, R. and Goeller, S.: Response to Filchner–Ronne Ice Shelf cavity warming in a coupled ocean–ice sheet model – Part 1: The ocean perspective, Ocean Sci., 13, 765-776, doi.org/10.5194/os-13-765-2017, 2017.

79. Xiaoxu Shi, Gerrit Lohmann, Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model, In Dynamics of Atmospheres and Oceans, Volume 79, 2017, Pages 10-30, ISSN 0377-0265,doi:10.1016/j.dynatmoce.2017.05.003.

78. Nachtsheim, D. A., Jerosch, K., Hagen, W., Plötz, J., & Bornemann, H. (2017). Habitat modelling of crabeater seals (Lobodon carcinophaga) in the Weddell Sea using the multivariate approach Maxent. Polar Biology, 40(5), 961-976.

77. Wekerle, C., Q. Wang, S. Danilov, V. Schourup-Kristensen, W.-J. von Appen, and T. Jung (2017), Atlantic Water in the Nordic Seas: Locally eddy-permitting ocean simulation in a global setup, J. Geophys. Res. Oceans, 122, 914–940, doi:10.1002/2016JC012121.

76. Rackow, T., Wesche, C., Timmermann, R., Hellmer, H. H., Juricke, S., & Jung, T. (2017). A simulation of small to giant Antarctic iceberg evolution: Differential impact on climatology estimatesJournal of Geophysical Research: Oceans.

75 [FESOM2]. Danilov, S., Sidorenko, D., Wang, Q., & Jung, T. (2017). The Finite-volumE Sea ice-Ocean Model (FESOM2)Geoscientific Model Development10(2), 765.

2016

74. Ionita, M. , Scholz, P. , Lohmann, G. , Dima, M. and Prange, M. (2016) Linkages between atmospheric blocking, sea ice export through Fram Strait and the Atlantic Meridional Overturning Circulation, Nature Scientific Reports, 6 (32881). doi:10.1038/srep32881

73. Wang, Q., Danilov, S., Jung, T., Kaleschke, L., & Wernecke, A. (2016). Sea ice leads in the Arctic Ocean: Model assessment, interannual variability and trends. Geophysical Research Letters43(13), 7019-7027.

72. Rackow, T., Goessling, H. F., Jung, T., Sidorenko, D., Semmler, T., Barbi, D., & Handorf, D. (2016). Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability. Climate Dynamics, 1-26.

71. Shi, X., & Lohmann, G. (2016). Simulated response of the mid‐Holocene Atlantic meridional overturning circulation in ECHAM6‐FESOM/MPIOM. Journal of Geophysical Research: Oceans121(8), 6444-6469.

70. Mengel, M., Feldmann, J., & Levermann, A. (2016). Linear sea-level response to abrupt ocean warming of major West Antarctic ice basin. Nature Climate Change6(1), 71-74.

69. Danabasoglu, G., Yeager, S. G., Kim, W. M., Behrens, E., Bentsen, M., Bi, D., ... & Canuto, V. M. (2016). North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modelling97, 65-90. doi.org/10.1016/j.ocemod.2015.11.007

68. Wang, Q., et al., An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: Sea ice and solid freshwater, Ocean Modelling, Volume 99, March 2016, Pages 110-132, ISSN 1463-5003, doi.org/10.1016/j.ocemod.2015.12.008

67. Wang, Q., Ilicak, M., Gerdes, R., Drange, H., Aksenov, Y., Bailey, D. A., ... & Cassou, C. (2016). An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part II: Liquid freshwater. Ocean Modelling99, 86-109, doi.org/10.1016/j.ocemod.2015.12.009

66. Ilıcak, M. et al., An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes, Ocean Modelling, Volume 100, April 2016, Pages 141-161, ISSN 1463-5003, doi.org/10.1016/j.ocemod.2016.02.004

65. Tseng Y. et al., North and equatorial Pacific Ocean circulation in the CORE-II hindcast simulations, Ocean Modelling, Volume 104, August 2016, Pages 143-170, ISSN 1463-5003, doi.org/10.1016/j.ocemod.2016.06.003

64. Sein, D. V., Danilov, S., Biastoch, A., Durgadoo, J. V., Sidorenko, D., Harig, S., & Wang, Q. (2016). Designing variable ocean model resolution based on the observed ocean variability. Journal of Advances in Modeling Earth Systems8(2), 904-916.

63. Goessling, H. F., S. Tietsche, J. J. Day, E. Hawkins, and T. Jung (2016), Predictability of the Arctic sea ice edge, Geophys. Res. Lett., 43, 1642–1650, doi:10.1002/2015GL067232.

62. Day, J. J., Tietsche, S., Collins, M., Goessling, H. F., Guemas, V., Guillory, A., Hurlin, W. J., Ishii, M., Keeley, S. P. E., Matei, D., Msadek, R., Sigmond, M., Tatebe, H., and Hawkins, E.: The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales (APPOSITE) data set version 1, Geosci. Model Dev., 9, 2255-2270, doi.org/10.5194/gmd-9-2255-2016, 2016.

61. Semmler, T., Stulic, L., Jung, T., Tilinina, N., Campos, C., Gulev, S. and Koracin, D., 2016. Seasonal atmospheric responses to reduced Arctic sea ice in an ensemble of coupled model simulations. Journal of Climate, 29(16), pp.5893-5913.

2015

60. Haid, V., Timmermann, R., Ebner, L., and Heinemann, G.: Atmospheric forcing of coastal polynyas in the south-western Weddell Sea, Antarctic Science, 27, 388–402, 2015.

59. Sidorenko, D., Rackow, T., Jung, T., Semmler, T., Barbi ,D., Danilov, S., Dethloff ,K., Dorn, W., Fieg, K., Goessling, H. F., Handorf, D., Harig, S.,  Hiller, W.,  Juricke, S., Losch, M.,  Schröter, J.,  Sein,  D. V., Wang, Q., (2015). Towards multi-resolution global climate modeling with ECHAM6–FESOM. Part I: model formulation and mean climate. Climate Dynamics44(3-4), 757-780.

58. Downes, S. M., Farneti, R., Uotila, P., Griffies, S. M., Marsland, S. J., Bailey, D., ... & Böning, C. (2015). An assessment of Southern Ocean water masses and sea ice during 1988–2007 in a suite of interannual CORE-II simulationsOcean Modelling94, 67-94.

57. van Caspel, M. R., Absy, J. M., Wang, Q., Hellmer, H. H., & Schröder, M. (2015). The flow of dense water plumes in the western Weddell Sea simulated with the Finite Element Ocean Model (FEOM). In Towards an interdisciplinary approach in earth system science (pp. 125-129). Springer International Publishing.

56. Danilov, S., Wang, Q., Timmermann, R., Iakovlev, N., Sidorenko, D., Kimmritz, M., Jung, T., and Schröter, J.: Finite-Element Sea Ice Model (FESIM), version 2, Geosci. Model Dev., 8, 1747-1761, doi.org/10.5194/gmd-8-1747-2015, 2015.

55. Riccardo Farneti, et al., An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations, Ocean Modelling, Volume 93, September 2015, Pages 84-120, ISSN 1463-5003, doi.org/10.1016/j.ocemod.2015.07.009

54. Rietbroek, R., Brunnabend, S. E., Kusche, J., Schröter, J., & Dahle, C. (2016). Revisiting the contemporary sea-level budget on global and regional scales. Proceedings of the National Academy of Sciences, 113(6), 1504-1509. doi: 10.1073/pnas.1519132113

2014

53. Jung, T., Serrar, S., & Wang, Q. (2014). The oceanic response to mesoscale atmospheric forcing. Geophysical Research Letters41(4), 1255-1260.

52. Nakayama, Y., Timmermann, R., Schröder, M., and Hellmer, H. H.: On the difficulty of modeling Circumpolar Deep Water intrusions onto the Amundsen Sea continental shelf, Ocean Modell., 84, 26–34, 2014.

51. Nakayama, Y., Timmermann, R., Rodehacke, C. B., Schröder, M., & Hellmer, H. H. (2014). Modeling the spreading of glacial meltwater from the Amundsen and Bellingshausen Seas. Geophysical Research Letters41(22), 7942-7949.

50. Scholz, P. , Kieke, D. , Lohmann, G. , Ionita, M. and Rhein, M. (2014) Evaluation of Labrador Sea water formation in a global finite-element sea-ice ocean model setup based on a comparison with observational data, Journal of Geophysical Research: Oceans doi:10.1002/2013JC009232

49. Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wekerle, C., Wang, X., ... & Schröter, J. (2014). The Finite Element Sea Ice-Ocean Model (FESOM) v. 1.4: formulation of an ocean general circulation model. Geoscientific Model Development7(2), 663-693.

48. Schourup-Kristensen, V., Sidorenko, D., Wolf-Gladrow, D. A., & Völker, C. (2014). A skill assessment of the biogeochemical model REcoM2 coupled to the Finite Element Sea Ice–Ocean Model (FESOM 1.3). Geoscientific Model Development7(6), 2769-2802.

47. Rietbroek, Roelof, Mathias Fritsche, Christoph Dahle, Sandra-Esther Brunnabend, Madlen Behnisch, Jürgen Kusche, Frank Flechtner, Jens Schröter, and Reinhard Dietrich. "Can GPS-derived surface loading bridge a GRACE mission gap?." Surveys in Geophysics 35, no. 6 (2014): 1267-1283.

46. Gong, Y., Cornford, S. L., & Payne, A. J. (2014). Modelling the response of the Lambert Glacier–Amery Ice Shelf system, East Antarctica, to uncertain climate forcing over the 21st and 22nd centuries. The Cryosphere8(3), 1057-1068.

45. Juricke, S., Goessling, H. F., & Jung, T. (2014). Potential sea ice predictability and the role of stochastic sea ice strength perturbations. Geophysical Research Letters41(23), 8396-8403.

44. Danabasoglu, G., Yeager, S. G., Bailey, D., Behrens, E., Bentsen, M., Bi, D., ... & Cassou, C. (2014). North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: mean states. Ocean Modelling73, 76-107.

43. Stephen M. Griffies et al., An assessment of global and regional sea level for years 1993–2007 in a suite of interannual CORE-II simulations, Ocean Modelling, Volume 78, June 2014, Pages 35-89, ISSN 1463-5003, doi.org/10.1016/j.ocemod.2014.03.004 .

42. Juricke, S., & Jung, T. (2014). Influence of stochastic sea ice parametrization on climate and the role of atmosphere–sea ice–ocean interaction. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences372(2018), 20130283.

2013

41. Scholz, P., Lohmann, G., Wang, Q., & Danilov, S. (2013). Evaluation of a Finite-Element Sea-Ice Ocean Model (FESOM) set-up to study the interannual to decadal variability in the deep-water formation rates. Ocean Dynamics63(4), 347-370.

40. Castro de la Guardia, L., Derocher, A. E., Myers, P. G., Terwisscha van Scheltinga, A. D., & Lunn, N. J. (2013). Future sea ice conditions in Western Hudson Bay and consequences for polar bears in the 21st century. Global Change Biology19(9), 2675-2687.

39. Haid, V., & Timmermann, R. (2013). Simulated heat flux and sea ice production at coastal polynyas in the southwestern Weddell Sea. Journal of Geophysical Research: Oceans118(5), 2640-2652.

38. Timmermann, R., & Hellmer, H. H. (2013). Southern Ocean warming and increased ice shelf basal melting in the twenty-first and twenty-second centuries based on coupled ice-ocean finite-element modelling. Ocean Dynamics63(9-10), 1011-1026.

37. Wekerle, C., Wang, Q., Danilov, S., Jung, T., & Schröter, J. (2013). The Canadian Arctic Archipelago throughflow in a multiresolution global model: Model assessment and the driving mechanism of interannual variability. Journal of Geophysical Research: Oceans118(9), 4525-4541.

36. Juricke, S., Lemke, P., Timmermann, R., & Rackow, T. (2013). Effects of stochastic ice strength perturbation on Arctic finite element sea ice modeling. Journal of Climate26(11), 3785-3802.

35. Danilov, S. (2013). Ocean modeling on unstructured meshes. Ocean Modelling69, 195-210.

2012

34. Hellmer, H. H., Kauker, F., Timmermann, R., Determann, J., and Rae, J.: Twenty-first-century warming of a large Antarctic ice- shelf cavity by a redirected coastal current, Nature, 485, 225–228, 2012.

33. Janjić, T., Schröter, J., Savcenko, R., Bosch, W., Albertella, A., Rummel, R., Klatt, O. (2012). Impact of combining GRACE and GOCE gravity data on ocean circulation estimates. Ocean Science, 8, 65-79  doi:10.5194/os-8-65-2012.

32. Janjić, T., Schröter, J., Albertella, A., Bosch, W., Rummel, R., Savcenko, R., Schwabe, J., Scheinert, M. (2012). Assimilation of geodetic dynamic ocean topography using ensemble based Kalman filter. Journal of Geodynamics, 59-60, pp. 92-98  doi:10.5194/os-8-65-2012.

31. Wang, X., Wang, Q., Sidorenko, D., Danilov, S., Schröter, J., & Jung, T. (2012). Long-term ocean simulations in FESOM: evaluation and application in studying the impact of Greenland Ice Sheet melting. Ocean Dynamics62(10-12), 1471-1486.

30. Timmermann, R., Wang, Q., & Hellmer, H. H. (2012). Ice-shelf basal melting in a global finite-element sea-ice/ice-shelf/ocean model. Annals of Glaciology53(60), 303-314.

29. Wang, Q., Danilov, S., Fahrbach, E., Schröter, J., & Jung, T. (2012). On the impact of wind forcing on the seasonal variability of Weddell Sea Bottom Water transport. Geophysical Research Letters39(6).

28. Danilov, S. (2012). Two finite-volume unstructured mesh models for large-scale ocean modeling. Ocean Modelling47, 14-25.

2011

27. Janjić, T., Nerger, L., Albertella, A., Schröter, J., Skachko, S. (2011). On domain localization in ensemble based Kalman filter algorithms. Monthly Weather Review, 139, 2046-2060  doi:10.1175/2011MWR3552.1.

26. Sidorenko, D., Wang, Q., Danilov, S., & Schröter, J. (2011). FESOM under coordinated ocean-ice reference experiment forcing. Ocean Dynamics61(7), 881-890.

25. Ernsdorf, T., Schröder, D., Adams, S., Heinemann, G., Timmermann, R., & Danilov, S. (2011). Impact of atmospheric forcing data on simulations of the Laptev Sea polynya dynamics using the sea‐ice ocean model FESOM. Journal of Geophysical Research: Oceans116(C12).

24. Adams, S., Willmes, S., Heinemann, G., Rozman, P., Timmermann, R., & Schröder, D. (2011). Evaluation of simulated sea-ice concentrations from sea-ice/ocean models using satellite data and polynya classification methods. Polar Research30(1), 7124.

2010

23. Terwisscha van Scheltinga, A., P. G. Myers, and J. D. Pietrzak (2010), A finite element sea ice model of the Canadian Arctic Archipelago, Ocean Dyn., 60(6), 1539–1558, doi:10.1007/s10236-010-0356-5.

22. Böning, C., Timmermann, R., Danilov, S., & Schröter, J. (2010). Antarctic circumpolar current transport variability in GRACE gravity solutions and numerical ocean model simulations. In System Earth via Geodetic-Geophysical Space Techniques (pp. 187-199). Springer Berlin Heidelberg.

21. Jansen, M. J. F., B. C. Gunter, R. Rietbroek, C. Dahle, J. Kusche, F. Flechtner, S-E. Brunnabend, and J. Schröter. "Estimating sub-monthly global mass transport signals using grace, gps and obp data sets." In Gravity, Geoid and Earth Observation, pp. 587-593. Springer Berlin Heidelberg, 2010.

20. Wang, Q., Danilov, S., Hellmer, H. H., & Schröter, J. (2010). Overflow dynamics and bottom water formation in the western Ross Sea: Influence of tides. Journal of Geophysical Research: Oceans115(C10).

19. Danilov, S., & Schröter, J. (2010). Unstructured meshes in large-scale ocean modeling. In Handbook of Geomathematics (pp. 371-398). Springer Berlin Heidelberg.

18. Richter, F., Sidorenko, D., Danilov, S., & Schröter, J. (2010). Using ARGO, GRACE and altimetry data to assess the quasi stationary North Atlantic circulation. In System Earth via Geodetic-Geophysical Space Techniques (pp. 351-358). Springer, Berlin, Heidelberg.

2009

17. Rietbroek, R., Brunnabend, S. E., Dahle, C., Kusche, J., Flechtner, F., Schröter, J., & Timmermann, R. (2009). Changes in total ocean mass derived from GRACE, GPS, and ocean modeling with weekly resolution. Journal of Geophysical Research: Oceans114(C11).

16. Wang, Q., Danilov, S., & Schröter, J. (2009). Bottom water formation in the southern Weddell Sea and the influence of submarine ridges: Idealized numerical simulations. Ocean Modelling28(1), 50-59.

15. Sidorenko, D., Danilov, S., Wang, Q., Huerta-Casas, A., & Schröter, J. (2009). On computing transports in finite-element models. Ocean Modelling28(1), 60-65.

14. Ralph Timmermann, Sergey Danilov, Jens Schröter, Carmen Böning, Dmitry Sidorenko, Katja Rollenhagen, Ocean circulation and sea ice distribution in a finite element global sea ice–ocean model, Ocean Modelling, Volume 27, Issue 3, 2009, Pages 114-129, ISSN 1463-5003, dx.doi.org/10.1016/j.ocemod.2008.10.009.

2008

13. Wang, Q., Danilov, S., & Schröter, J. (2008). Finite element ocean circulation model based on triangular prismatic elements, with application in studying the effect of topography representation. Journal of Geophysical Research: Oceans, 113(C5). DOI: 10.1029/2007JC004482

12. Böning, C., Timmermann, R., Macrander, A., & Schröter, J. (2008). A pattern‐filtering method for the determination of ocean bottom pressure anomalies from GRACE solutions. Geophysical Research Letters35(18).

11. Wang, Q., Danilov, S., & Schröter, J. (2008). Comparison of overflow simulations on different vertical grids using the finite element ocean circulation model. Ocean Modelling20(4), 313-335.

10. Danilov, S., Wang, Q., Losch, M., Sidorenko, D., & Schröter, J. (2008). Modeling ocean circulation on unstructured meshes: comparison of two horizontal discretizations. Ocean Dynamics58(5), 365-374.

9. Skachko, S., Danilov, S., Janjić, T., Schröter, J., Sidorenko, D., Savcenko, R., & Bosch, W. (2008). Sequential assimilation of multi-mission dynamical topography into a global finite-element ocean model. Ocean Science4(4), 307-318.

8. Maßmann, S., Androsov, A., & Danilov, S. (2010). Intercomparison between finite element and finite volume approaches to model North Sea tides. Continental Shelf Research30(6), 680-691.

7. Sidorenko, D., Danilov, S., & Schröter, J. (2008). Inverse solution for pentadal variability in the North Atlantic. Geophysical Research Letters35(2).

2007

6. Nerger, L., Danilov, S., Kivman, G., Hiller, W., Schröter, J.(2007). Data assimilation with the Ensemble Kalman Filter and the SEIK filter applied to a finite element model of the North Atlantic, Journal of Marine Systems, 65(1/4), 288-298.,  doi:10.1016/j.jmarsys.2005.06.009.

2006

5. Nerger, L., Danilov, S., Hiller, W., Schröter, J.(2006). Using sea-level data to constrain a finite-element primitive-equation ocean model with a local SEIK filter, Ocean Dynamics, 56(5/6), 634-649., doi:10.1007/s10236-006-0083-0.

4. Sidorenko, D., Danilov, S., Kivman, G., & Schröter, J. (2006). On the use of a deep pressure gradient constraint for estimating the steady state ocean circulation from hydrographic data. Geophysical research letters, 33(2).

2005

3. Danilov, S., Kivman, G., & Schröter, J. (2005). Evaluation of an eddy-permitting finite-element ocean model in the North Atlantic. Ocean modelling10(1-2), 35-49.

2004

2. Danilov, S., Kivman, G., & Schröter, J. (2004). A finite-element ocean model: principles and evaluation. Ocean Modelling, 6(2), 125-150.

2003

1. Dobrindt, U., & Schröter, J. (2003). An adjoint ocean model using finite elements: An application to the South Atlantic. Journal of Atmospheric and Oceanic Technology20(3), 392-407.