AWI-ESM and FESOM for paleoclimate studies

Recent work also illustrates the need to improve the model spatial resolution around sites where paleoclimate data have been gathered. The most efficient approach is through a multi-scale concept which has been shown to be applicable to paleoclimate modelling (Shi and Lohmann, 2016). Building upon an unstructured mesh approach (Sidorenko et al., 2015, in review) it becomes possible to zoom into regions of interest while keeping the resolution sufficiently low in other areas (e.g., Scholz et al., 2013, 2014; Ionita et al., 2016; Danek et al., 2019), see Fig. 1. The availability of efficient numerical algorithms in FESOM2 (Danilov et al., 2017) presents a unique opportunity to quantify key processes determining the fundamental relationships between climate variations and long-term climate records (instrumental and those derived from environmental archives). Building upon recent analyses shedding light on the processes that have determined the large-scale ocean circulation and climate feedbacks for the Holocene and deglacial climate (e.g., Lohmann et al., 2013; Zhang et al., 2014, 2017; Wassenburg et al., 2016; Butzin et al., 2017), we develop a unique framework with locally high-resolution (Fig. 1) aiming to analyze past, present and future climates. For paleoclimate applications there is a dedicated development of AWI-CM, the AWI-ESM.

References:

Butzin, M., Köhler, P., and Lohmann, G. (2017): Marine Radiocarbon Reservoir Age Simulations for the Past 50,000 Years. Geophysical Research Letters, 44, 8473-8480, doi:10.1002/2017GL074688.

Danek, C., Scholz, P., and Lohmann, G. (2019): Effects of high resolution and spinup time on modeled North Atlantic circulation. Journal of Physical Oceanography, 49, 1159-1181, doi:10.1175/JPO-D-18-0141.1.

Danilov, S., Sidorenko, D., Wang, Q., and Jung, T. (2017): The Finite-volumE Sea ice–Ocean Model (FESOM2). Geoscientific Model Development, 10, 765-789, doi:10.5194/gmd-10-765-2017.

Ionita, M., Scholz, P., Lohmann, G., Dima, M., and Prange, M. (2016): Linkages between atmospheric blocking, sea ice export through Fram Strait and the Atlantic Meridional Overturning Circulation. Scientific Reports, 6, 32881, doi:10.1038/srep32881.

Lohmann, G., Pfeiffer, M., Laepple, T., Leduc, G., and J.-H. Kim (2013): A model-data comparison of the Holocene global sea surface temperature evolution. Climate of the Past, 9, 1807-1839, doi:10.5194/cp-9-1807-2013.

Scholz, P., G. Lohmann, Q. Wang, and S. Danilov (2013): Evaluation of a Finite-Element Sea-Ice Ocean Model (FESOM) set-up to study the interannual to decadal variability in the deep-water formation rates. Ocean Dynamics, 63, 347-370.

Scholz, P., Kieke, D., Lohmann, G., Ionita, M., and Rhein, M. (2014): Evaluation of Labrador Sea Water formation in a global Finite-Element Sea-Ice Ocean Model setup, based on a comparison with observational data. Journal of Geophysical Research - Oceans, 119, 1644-1667, doi:10.1002/2013JC009232.

Shi, X. and Lohmann, G. (2016): Simulated response of the mid-Holocene Atlantic meridional overturning circulation in ECHAM6-FESOM/MPIOM, Journal of Geophysical Research: Oceans, 121, 6444-6469, doi: 10.1002/2015JC011584.
Sidorenko, D., Rackow, T., Jung, T., Semmler, T., Barbi, D., Danilov, S., Dethloff, K., Dorn, W., Fieg, K., Gößling, H.F., Handorf, D., Harig, S., Hiller, W., Juricke, S., Losch, M., Schröter, J., Sein, D., and Wang, Q. (2015): Towards multi-resolution global climate modeling with ECHAM6–FESOM. Part I: model formulation and mean climate. Climate Dynamics, 44, 757-780, doi:10.1007/s00382-014-2290-6.

Sidorenko, D., Rackow, T., Jung, T., Semmler, T., Barbi ,D., Danilov, S., Dethloff ,K., Dorn, W., Fieg, K., Goessling, H. F., Handorf, D., Harig, S.,  Hiller, W.,  Juricke, S., Losch, M.,  Schröter, J.,  Sein,  D. V., Wang, Q.  2015. Towards multi-resolution global climate modeling with ECHAM6–FESOM. Part I: model formulation and mean climate. Climate Dynamics, 44(3-4), pp.757-780.


Sidorenko, D., Goessling, H. F., Koldunov, N., Scholz, P., Danilov, S., Barbi, D., Cabos, W., Gurses, O., Harig, S., Hinrichs, C., Juricke, S., Lohmann, G., Losch, M., Mu, L., Rackow, T., Rakowsky, N., Sein, D., Semmler, T., Shi, X., Stepanek, C., Streffing, J., Wang, Q., Wekerle, C., Yang, H., and Jung, T. (2019): Evaluation of FESOM2.0 coupled to ECHAM6.3: Pre-industrial and HighResMIP simulations. JAMES (in review).

Wassenburg, J. A., Dietrich, S., Fietzke, J., Fohlmeister, J., Jochum, K. P., Scholz, D., Richter, D. K., Sabaoui, A., Spötl, C., Lohmann, G., Andreae, M. O., and Immenhauser, A. (2016): Major reorganization of the North Atlantic Oscillation during Early Holocene deglaciation. Nature Geosciences, 9, 602-605, doi:10.1038/ngeo2767.

Zhang, X., Lohmann, G. Knorr, G., and Purcell, C. (2014): Abrupt glacial climate shifts controlled by ice sheet changes. Nature, 512, 290-294, doi:10.1038/nature13592.

Zhang, X., Knorr, G., Lohmann, G., and S. Barker (2017): Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state. Nature Geoscience, 10, 518-523, doi:10.1038/NGEO2974.