Publications with AWI-CM as member of the larger CMIP ensemble



17. Keeble, J., Hassler, B., Banerjee, A., Checa-Garcia, R., Chiodo, G., Davis, S., Eyring, V., Griffiths, P. T., Morgenstern, O., Nowack, P., Zeng, G., Zhang, J., Bodeker, G., Burrows, S., Cameron-Smith, P., Cugnet, D., Danek, C., Deushi, M., Horowitz, L. W., Kubin, A., Li, L., Lohmann, G., Michou, M., Mills, M. J., Nabat, P., Olivié, D., Park, S., Seland, Ø., Stoll, J., Wieners, K.-H., and Wu, T.: Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100, Atmos. Chem. Phys., 21, 5015–5061,, 2021.

16. Latonin, M. M., Bashmachnikov, I. L., Bobylev, L. P., & Davy, R. (2021). Multi-model ensemble mean of global climate models fails to reproduce early twentieth century Arctic warming. Polar Science, 100677.

15 [AWI-CM2] Kageyama, M., et al., A multi-model CMIP6-PMIP4 study of Arctic sea ice at 127 ka: sea ice data compilation and model differences, Clim. Past, 17, 37–62,, 2021.

14 [AWI-CM2]. Otto-Bliesner, B. L., et al., Large-scale features of Last Interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4), Clim. Past, 17, 63–94,, 2021.

13.  Goyal, R., Gupta, A. S., Jucker, M., & England, M. H. (2021). Historical and projected changes in the Southern Hemisphere surface westerlies. Geophysical Research Letters, 48, e2020GL090849.

12. Zhang, X., Li, X., Manzanedo, R. D., D’Orangeville, L., Lv, P., Wang, C., ... & Rademacher, T. (2020). High risk of growth cessation of planted larch under extreme drought. Environmental Research Letters, 16(1), 014040.


11. Schlund, M., Lauer, A., Gentine, P., Sherwood, S. C., and Eyring, V.: Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6?, Earth Syst. Dynam., 11, 1233–1258,, 2020.

10. Paik, S., and S. Min, 2020: Quantifying the Anthropogenic Greenhouse Gas Contribution to the Observed Spring Snow-Cover Decline Using the CMIP6 Multimodel Ensemble. J. Climate, 33, 9261–9269,

9.  Fan, X., Miao, C., Duan, Q., Shen, C., & Wu, Y. (2020). The performance of CMIP6 versus CMIP5 in simulating temperature extremes over the global land surface. Journal of Geophysical Research: Atmospheres, 125, e2020JD033031.

8.  Pendergrass, A. G. (2020). The global‐mean precipitation response to CO2‐induced warming in CMIP6 models. Geophysical Research Letters, 47, e2020GL089964.

7.  Fang, S.‐W., & Yu, J.‐Y. (2020). Contrasting transition complexity between El Niño and La Niña: Observations and CMIP5/6 models. Geophysical Research Letters, 47, e2020GL088926.

6.  Di Luca, A., Pitman, A. J., & de Elía, R.. (2020). Decomposing temperature extremes errors in CMIP5 and CMIP6 models. Geophysical Research Letters, 47, e2020GL088031.

5. Bracegirdle, TJ, Krinner, G, Tonelli, M, et al . Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6. Atmos Sci Lett. 2020;e984.

4. Zhu, Y., Zhang, R. H., & Sun, J. (2020). North Pacific upper-ocean cold temperature biases in CMIP6 simulations and the role of regional vertical mixing. Journal of Climate, (2020).

3. Bracegirdle, T. J., Holmes, C. R., Hosking, J. S., Marshall, G. J., Osman, M., Patterson, M., & Rackow, T. ( 2020). Improvements in Circumpolar Southern Hemisphere Extratropical Atmospheric Circulation in CMIP6 Compared to CMIP. Earth and Space Science, 7, e2019EA001065.

2. Notz, D., Dörr, J., Bailey, D. A., Blockley, E., Bushuk, M., Debernard, J. B., et al.. ( 2020). Arctic Sea Ice in CMIP6. Geophysical Research Letters, 47, e2019GL086749.

1. Roach, L. A., Dörr, J., Holmes, C. R., Massonnet, F., Blockley, E. W., Notz, D., et al.. ( 2020). Antarctic Sea Ice Area in CMIP6. Geophysical Research Letters, 47, e2019GL086729.